Embedding Models
info
This page may contain outdated information. It will be updated as soon as possible.
Amazon Bedrock Embeddings​
Used to load embedding models from Amazon Bedrock.
Parameter | Type | Description | Default |
---|---|---|---|
credentials_profile_name | str | Name of the AWS credentials profile in ~/.aws/credentials or ~/.aws/config, which has access keys or role information. | |
model_id | str | ID of the model to call, e.g., amazon.titan-embed-text-v1 . This is equivalent to the modelId  property in the list-foundation-models  API. | |
endpoint_url | str | URL to set a specific service endpoint other than the default AWS endpoint. | |
region_name | str | AWS region to use, e.g., us-west-2 . Falls back to AWS_DEFAULT_REGION  environment variable or region specified in ~/.aws/config if not provided. |
Astra vectorize​
Used to generate server-side embeddings using DataStax Astra.
Parameter | Type | Description | Default |
---|---|---|---|
provider | str | The embedding provider to use. | |
model_name | str | The embedding model to use. | |
authentication | dict | Authentication parameters. Use the Astra Portal to add the embedding provider integration to your Astra organization. | |
provider_api_key | str | An alternative to the Astra Authentication that let you use directly the API key of the provider. | |
model_parameters | dict | Additional model parameters. |
Cohere Embeddings​
Used to load embedding models from Cohere.
Parameter | Type | Description | Default |
---|---|---|---|
cohere_api_key | str | API key required to authenticate with the Cohere service. | |
model | str | Language model used for embedding text documents and performing queries. | embed-english-v2.0 |
truncate | bool | Whether to truncate the input text to fit within the model's constraints. | False |
Azure OpenAI Embeddings​
Generate embeddings using Azure OpenAI models.
Parameter | Type | Description | Default |
---|---|---|---|
Azure Endpoint | str | Your Azure endpoint, including the resource. Example:Â https://example-resource.azure.openai.com/ | |
Deployment Name | str | The name of the deployment. | |
API Version | str | The API version to use, options include various dates. | |
API Key | str | The API key to access the Azure OpenAI service. |
Hugging Face API Embeddings​
Generate embeddings using Hugging Face Inference API models.
Parameter | Type | Description | Default |
---|---|---|---|
API Key | str | API key for accessing the Hugging Face Inference API. | |
API URL | str | URL of the Hugging Face Inference API. | http://localhost:8080 |
Model Name | str | Name of the model to use for embeddings. | BAAI/bge-large-en-v1.5 |
Cache Folder | str | Folder path to cache Hugging Face models. | |
Encode Kwargs | dict | Additional arguments for the encoding process. | |
Model Kwargs | dict | Additional arguments for the model. | |
Multi Process | bool | Whether to use multiple processes. | False |
Hugging Face Embeddings​
Used to load embedding models from HuggingFace.
Parameter | Type | Description | Default |
---|---|---|---|
Cache Folder | str | Folder path to cache HuggingFace models. | |
Encode Kwargs | dict | Additional arguments for the encoding process. | |
Model Kwargs | dict | Additional arguments for the model. | |
Model Name | str | Name of the HuggingFace model to use. | sentence-transformers/all-mpnet-base-v2 |
Multi Process | bool | Whether to use multiple processes. | False |
OpenAI Embeddings​
Used to load embedding models from OpenAI.
Parameter | Type | Description | Default |
---|---|---|---|
OpenAI API Key | str | The API key to use for accessing the OpenAI API. | |
Default Headers | Dict[str, str] | Default headers for the HTTP requests. | |
Default Query | NestedDict | Default query parameters for the HTTP requests. | |
Allowed Special | List[str] | Special tokens allowed for processing. | [] |
Disallowed Special | List[str] | Special tokens disallowed for processing. | ["all"] |
Chunk Size | int | Chunk size for processing. | 1000 |
Client | Any | HTTP client for making requests. | |
Deployment | str | Deployment name for the model. | text-embedding-3-small |
Embedding Context Length | int | Length of embedding context. | 8191 |
Max Retries | int | Maximum number of retries for failed requests. | 6 |
Model | str | Name of the model to use. | text-embedding-3-small |
Model Kwargs | NestedDict | Additional keyword arguments for the model. | |
OpenAI API Base | str | Base URL of the OpenAI API. | |
OpenAI API Type | str | Type of the OpenAI API. | |
OpenAI API Version | str | Version of the OpenAI API. | |
OpenAI Organization | str | Organization associated with the API key. | |
OpenAI Proxy | str | Proxy server for the requests. | |
Request Timeout | float | Timeout for the HTTP requests. | |
Show Progress Bar | bool | Whether to show a progress bar for processing. | False |
Skip Empty | bool | Whether to skip empty inputs. | False |
TikToken Enable | bool | Whether to enable TikToken. | True |
TikToken Model Name | str | Name of the TikToken model. |
Ollama Embeddings​
Generate embeddings using Ollama models.
Parameter | Type | Description | Default |
---|---|---|---|
Ollama Model | str | Name of the Ollama model to use. | llama2 |
Ollama Base URL | str | Base URL of the Ollama API. | http://localhost:11434 |
Model Temperature | float | Temperature parameter for the model. Adjusts the randomness in the generated embeddings. |
VertexAI Embeddings​
Wrapper around Google Vertex AI Embeddings API.
Parameter | Type | Description | Default |
---|---|---|---|
credentials | Credentials | The default custom credentials to use. | |
location | str | The default location to use when making API calls. | us-central1 |
max_output_tokens | int | Token limit determines the maximum amount of text output from one prompt. | 128 |
model_name | str | The name of the Vertex AI large language model. | text-bison |
project | str | The default GCP project to use when making Vertex API calls. | |
request_parallelism | int | The amount of parallelism allowed for requests issued to VertexAI models. | 5 |
temperature | float | Tunes the degree of randomness in text generations. Should be a non-negative value. | 0 |
top_k | int | How the model selects tokens for output, the next token is selected from the top k  tokens. | 40 |
top_p | float | Tokens are selected from the most probable to least until the sum of their probabilities exceeds the top p  value. | 0.95 |
tuned_model_name | str | The name of a tuned model. If provided, model_name  is ignored. | |
verbose | bool | This parameter controls the level of detail in the output. When set to True , it prints internal states of the chain to help debug. | False |